48 research outputs found

    The error-bounded descriptional complexity of approximation networks

    Get PDF
    It is well known that artificial neural nets can be used as approximators of any continuous functions to any desired degree and therefore be used e.g. in high - speed, real-time process control. Nevertheless, for a given application and a given network architecture the non-trivial task remains to determine the necessary number of neurons and the necessary accuracy (number of bits) per weight for a satisfactory operation which are critical issues in VLSI and computer implementations of nontrivial tasks. In this paper the accuracy of the weights and the number of neurons are seen as general system parameters which determine the maximal approximation error by the absolute amount and the relative distribution of information contained in the network. We define as the error-bounded network descriptional complexity the minimal number of bits for a class of approximation networks which show a certain approximation error and achieve the conditions for this goal by the new principle of optimal information distribution. For two examples, a simple linear approximation of a non-linear, quadratic function and a non-linear approximation of the inverse kinematic transformation used in robot manipulator control, the principle of optimal information distribution gives the the optimal number of neurons and the resolutions of the variables, i.e. the minimal amount of storage for the neural net. Keywords: Kolmogorov complexity, e-Entropy, rate-distortion theory, approximation networks, information distribution, weight resolutions, Kohonen mapping, robot control

    Performance and storage requirements of topology-conserving maps for robot manipulator control

    Get PDF
    A new programming paradigm for the control of a robot manipulator by learning the mapping between the Cartesian space and the joint space (inverse Kinematic) is discussed. It is based on a Neural Network model of optimal mapping between two high-dimensional spaces by Kohonen. This paper describes the approach and presents the optimal mapping, based on the principle of maximal information gain. It is shown that Kohonens mapping in the 2-dimensional case is optimal in this sense. Furthermore, the principal control error made by the learned mapping is evaluated for the example of the commonly used PUMA robot, the trade-off between storage resources and positional error is discussed and an optimal position encoding resolution is proposed

    About adaptive state knowledge extraction for septic shock mortality prediction

    Get PDF
    The early prediction of mortality is one of the unresolved tasks in intensive care medicine. This contribution models medical symptoms as observations cased by transitions between hidden markov states. Learning the underlying state transition probabilities results in a prediction probability success of about 91%. The results are discussed and put in relation to the model used. Finally, the rationales for using the model are reflected: Are there states in the septic shock data

    A VLSI-design of the minimum entropy neuron

    Get PDF
    One of the most interesting domains of feedforward networks is the processing of sensor signals. There do exist some networks which extract most of the information by implementing the maximum entropy principle for Gaussian sources. This is done by transforming input patterns to the base of eigenvectors of the input autocorrelation matrix with the biggest eigenvalues. The basic building block of these networks is the linear neuron, learning with the Oja learning rule. Nevertheless, some researchers in pattern recognition theory claim that for pattern recognition and classification clustering transformations are needed which reduce the intra-class entropy. This leads to stable, reliable features and is implemented for Gaussian sources by a linear transformation using the eigenvectors with the smallest eigenvalues. In another paper (Brause 1992) it is shown that the basic building block for such a transformation can be implemented by a linear neuron using an Anti-Hebb rule and restricted weights. This paper shows the analog VLSI design for such a building block, using standard modules of multiplication and addition. The most tedious problem in this VLSI-application is the design of an analog vector normalization circuitry. It can be shown that the standard approaches of weight summation will not give the convergence to the eigenvectors for a proper feature transformation. To avoid this problem, our design differs significantly from the standard approaches by computing the real Euclidean norm. Keywords: minimum entropy, principal component analysis, VLSI, neural networks, surface approximation, cluster transformation, weight normalization circuit

    Medical analysis and diagnosis by neural networks

    Get PDF
    In its first part, this contribution reviews shortly the application of neural network methods to medical problems and characterizes its advantages and problems in the context of the medical background. Successful application examples show that human diagnostic capabilities are significantly worse than the neural diagnostic systems. Then, paradigm of neural networks is shortly introduced and the main problems of medical data base and the basic approaches for training and testing a network by medical data are described. Additionally, the problem of interfacing the network and its result is given and the neuro-fuzzy approach is presented. Finally, as case study of neural rule based diagnosis septic shock diagnosis is described, on one hand by a growing neural network and on the other hand by a rule based system. Keywords: Statistical Classification, Adaptive Prediction, Neural Networks, Neurofuzzy, Medical System

    Adaptive modeling of biochemical pathways

    Get PDF
    In bioinformatics, biochemical pathways can be modeled by many differential equations. It is still an open problem how to fit the huge amount of parameters of the equations to the available data. Here, the approach of systematically learning the parameters is necessary. In this paper, for the small, important example of inflammation modeling a network is constructed and different learning algorithms are proposed. It turned out that due to the nonlinear dynamics evolutionary approaches are necessary to fit the parameters for sparse, given data. Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence - ICTAI 200

    Model selection and adaptation for biochemical pathways

    Get PDF
    In bioinformatics, biochemical signal pathways can be modeled by many differential equations. It is still an open problem how to fit the huge amount of parameters of the equations to the available data. Here, the approach of systematically obtaining the most appropriate model and learning its parameters is extremely interesting. One of the most often used approaches for model selection is to choose the least complex model which “fits the needs”. For noisy measurements, the model which has the smallest mean squared error of the observed data results in a model which fits too accurately to the data – it is overfitting. Such a model will perform good on the training data, but worse on unknown data. This paper propose as model selection criterion the least complex description of the observed data by the model, the minimum description length. For the small, but important example of inflammation modeling the performance of the approach is evaluated. Keywords: biochemical pathways, differential equations, septic shock, parameter estimation, overfitting, minimum description length

    Data driven automatic model selection and parameter adaptation – a case study for septic shock

    Get PDF
    In bioinformatics, biochemical pathways can be modeled by many differential equations. It is still an open problem how to fit the huge amount of parameters of the equations to the available data. Here, the approach of systematically learning the parameters is necessary. This paper propose as model selection criterion the least complex description of the observed data by the model, the minimum description length. For the small, but important example of inflammation modeling the performance of the approach is evaluated

    Self-organized learning in multi-layer networks

    Get PDF
    We present a framework for the self-organized formation of high level learning by a statistical preprocessing of features. The paper focuses first on the formation of the features in the context of layers of feature processing units as a kind of resource-restricted associative multiresolution learning We clame that such an architecture must reach maturity by basic statistical proportions, optimizing the information processing capabilities of each layer. The final symbolic output is learned by pure association of features of different levels and kind of sensorial input. Finally, we also show that common error-correction learning for motor skills can be accomplished also by non-specific associative learning. Keywords: feedforward network layers, maximal information gain, restricted Hebbian learning, cellular neural nets, evolutionary associative learnin
    corecore